zmq_pgm

Langue: en

Autres versions - même langue

Version: 06/04/2010 (fedora - 01/12/10)

Section: 7 (Divers)

NAME

zmq_pgm - 0MQ reliable multicast transport using PGM

SYNOPSIS

PGM (Pragmatic General Multicast) is a protocol for reliable multicast transport of data over IP networks.

DESCRIPTION

0MQ implements two variants of PGM, the standard protocol where PGM datagrams are layered directly on top of IP datagrams as defined by RFC 3208 (the pgm transport) and "Encapsulated PGM" where PGM datagrams are encapsulated inside UDP datagrams (the epgm transport).

The pgm and epgm transports can only be used with the ZMQ_PUB and ZMQ_SUB socket types.

Further, PGM sockets are rate limited by default and incur a performance penalty when used over a loopback interface. For details, refer to the ZMQ_RATE, ZMQ_RECOVERY_IVL and ZMQ_MCAST_LOOP options documented in zmq_setsockopt(3).


Caution

The pgm transport implementation requires access to raw IP sockets. Additional privileges may be required on some operating systems for this operation. Applications not requiring direct interoperability with other PGM implementations are encouraged to use the epgm transport instead which does not require any special privileges.

ADDRESSING

A 0MQ address string consists of two parts as follows: transport://endpoint. The transport part specifies the underlying transport protocol to use. For the standard PGM protocol, transport shall be set to pgm. For the "Encapsulated PGM" protocol transport shall be set to epgm. The meaning of the endpoint part for both the pgm and epgm transport is defined below.

Connecting a socket

When connecting a socket to a peer address using zmq_connect() with the pgm or epgm transport, the endpoint shall be interpreted as an interface followed by a semicolon, followed by a multicast address, followed by a colon and a port number.

An interface may be specified by either of the following:

* The interface name as defined by the operating system.
* The primary IPv4 address assigned to the interface, in itcqs numeric representation.

Note

Interface names are not standardised in any way and should be assumed to be arbitrary and platform dependent. On Win32 platforms no short interface names exist, thus only the primary IPv4 address may be used to specify an interface.

A multicast address is specified by an IPv4 multicast address in itcqs numeric representation.

WIRE FORMAT

Consecutive PGM datagrams are interpreted by 0MQ as a single continous stream of data where 0MQ messages are not necessarily aligned with PGM datagram boundaries and a single 0MQ message may span several PGM datagrams. This stream of data consists of 0MQ messages encapsulated in frames as described in zmq_tcp(7).

PGM datagram payload

The following ABNF grammar represents the payload of a single PGM datagram as used by 0MQ:

 datagram               = (offset data)
 offset                 = 2OCTET
 data                   = *OCTET
 

In order for late joining consumers to be able to identify message boundaries, each PGM datagram payload starts with a 16-bit unsigned integer in network byte order specifying either the offset of the first message frame in the datagram or containing the value 0xFFFF if the datagram contains solely an intermediate part of a larger message.

The following diagram illustrates the layout of a single PGM datagram payload:

 +------------------+----------------------+
 | offset (16 bits) |         data         |
 +------------------+----------------------+
 

The following diagram further illustrates how three example 0MQ frames are laid out in consecutive PGM datagram payloads:

 First datagram payload
 +--------------+-------------+---------------------+
 | Frame offset |   Frame 1   |   Frame 2, part 1   |
 |    0x0000    | (Message 1) | (Message 2, part 1) |
 +--------------+-------------+---------------------+
 
 Second datagram payload
 +--------------+---------------------+
 | Frame offset |   Frame 2, part 2   |
 | 0xFFFF       | (Message 2, part 2) |
 +--------------+---------------------+
 
 Third datagram payload
 +--------------+----------------------------+-------------+
 | Frame offset |   Frame 2, final 8 bytes   |   Frame 3   |
 | 0x0008       | (Message 2, final 8 bytes) | (Message 3) |
 +--------------+----------------------------+-------------+
 

EXAMPLE

Connecting a socket.

 /* Connecting to the multicast address 239.192.1.1, port 5555, */
 /* using the first ethernet network interface on Linux */
 /* and the Encapsulated PGM protocol */
 rc = zmq_connect(socket, "epgm://eth0;239.192.1.1:5555");
 assert (rc == 0);
 /* Connecting to the multicast address 239.192.1.1, port 5555, */
 /* using the network interface with the address 192.168.1.1 */
 /* and the standard PGM protocol */
 rc = zmq_connect(socket, "pgm://192.168.1.1;239.192.1.1:5555");
 assert (rc == 0);
 

SEE ALSO

zmq_connect(3) zmq_setsockopt(3) zmq_tcp(7) zmq_ipc(7) zmq_inproc(7) zmq(7)

AUTHORS

The 0MQ documentation was written by Martin Sustrik <m[blue]sustrik@250bpm.comm[][1]> and Martin Lucina <m[blue]mato@kotelna.skm[][2]>.

NOTES

1.
sustrik@250bpm.com
mailto:sustrik@250bpm.com
2.
mato@kotelna.sk
mailto:mato@kotelna.sk